Idiopathic Intracranial Hypertension and Cardiovascular Diseases Risk in the United Kingdom Women: An Obesity-Adjusted Risk Analysis Using Indirect Standardization

Authors

  • Ahmed Y. Azzam Faculty of Medicine, October 6 University, 6th of October City, Giza, Egypt. Director of Clinical Research and Clinical Artificial Intelligence, American Society for Inclusion, Diversity, and Health Equity (ASIDE), Delaware, USA. Montefiore-Einstein Cerebrovascular Research Lab, Albert Einstein College of Medicine, Bronx, NY, USA. Author https://orcid.org/0000-0002-4256-0159
  • Mahmoud M. Morsy Faculty of Medicine, October 6 University, 6th of October City, Giza, Egypt. Clinical Research Fellow, American Society for Inclusion, Diversity, and Health Equity (ASIDE), Delaware, USA. Author https://orcid.org/0009-0001-4356-5306
  • Mohamed Hatem Ellabban Faculty of Medicine, Al-Azhar University, Cairo, Egypt. Author https://orcid.org/0009-0005-0012-3574
  • Ahmed M. Morsy Cairo University Hospitals, Cairo, Egypt Author
  • Adham Adel Zahran Kasr Alainy Faculty of Medicine, Cairo University Hospitals, Cairo University, Cairo, Egypt. Author
  • Mahmoud Nassar Founder, American Society for Inclusion, Diversity, and Health Equity (ASIDE), Delaware, USA. Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, New York, USA. Author https://orcid.org/0000-0002-5401-9562
  • Omar S. Elsayed Faculty of Medicine, October 6 University, 6th of October City, Giza, Egypt. Author https://orcid.org/0009-0000-4635-6545
  • Adam Elswedy Faculty of Medicine, October 6 University, 6th of October City, Giza, Egypt. Author https://orcid.org/0009-0008-0154-0507
  • Osman Elamin Department of Neurosurgery, Jordan Hospital, Amman, Jordan. Author https://orcid.org/0000-0002-7845-2192
  • Ahmed Saad Al Zomia College of Medicine, King Khalid University, Abha, Saudi Arabia Author https://orcid.org/0000-0002-7850-7229
  • Hana J. Abukhadijah Medical Research Center, Hamad Medical Corporation, Doha, Qatar. Author https://orcid.org/0009-0008-7993-7467
  • Hammam A. Alotaibi Ophthalmology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. Author
  • Oday Atallah Department of Neurosurgery, Hannover Medical School, Hannover, Germany. Author https://orcid.org/0000-0002-3131-4104
  • Mohammed A. Azab Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, USA. Author https://orcid.org/0000-0002-3519-9035
  • Muhammed Amir Essibayi Montefiore-Einstein Cerebrovascular Research Lab, Albert Einstein College of Medicine, Bronx, NY, USA. Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA. Author https://orcid.org/0000-0001-8325-2382
  • Adam A. Dmytirw Neuroendovascular Program, Massachusetts General Hospital & Brigham and Women's Hospital, Harvard University, Boston, MA, USA. Neurovascular Centre, Divisions of Therapeutic Neuroradiology & Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. Author https://orcid.org/0000-0003-0131-5699
  • Mohamed D. Morsy College of Medicine, King Khalid University, Abha, Saudi Arabia. Author https://orcid.org/0000-0002-9205-9338
  • David J. Altschul Montefiore-Einstein Cerebrovascular Research Lab, Albert Einstein College of Medicine, Bronx, NY, USA. Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA. Author https://orcid.org/0000-0002-5130-1378

DOI:

https://doi.org/10.71079/h1fr8h68

Keywords:

Idiopathic Intracranial Hypertension, Pseudotumor Cerebri, Stroke, Ischemic Stroke, Cardiovascular Disease

Abstract

Introduction: Idiopathic intracranial hypertension (IIH) is known to elevate cardiovascular disease (CVD) risk, but the extent to which obesity and IIH-specific factors contribute to this risk is not well understood. WE aim to separate the effects of obesity from IIH-specific factors on the risk of stroke and CVD, building on previous findings that indicate a two-fold increase in cardiovascular events in women with IIH compared to BMI-matched controls.

Methods: An obesity-adjusted risk analysis was conducted using Indirect Standardization based on data from a cohort study by Adderley et al., which included 2,760 women with IIH and 27,125 matched healthy controls from The Health Improvement Network (THIN). Advanced statistical models were employed to adjust for confounding effects of obesity and determine the risk contributions of IIH to ischemic stroke and CVD, independent of obesity. Four distinct models explored the interactions between IIH, obesity, and CVD risk.

Results: The analysis showed that IIH independently contributes to increased cardiovascular risk beyond obesity alone. Risk ratios for cardiovascular outcomes were significantly higher in IIH patients compared to controls within similar obesity categories. Notably, a synergistic effect was observed in obese IIH patients, with a composite CVD risk ratio of 6.19 (95% CI: 4.58-8.36, p<0.001) compared to non-obese controls.

Conclusions: This study underscores a significant, independent cardiovascular risk from IIH beyond obesity. The findings advocate for a shift in managing IIH to include comprehensive cardiovascular risk assessment and mitigation. Further research is required to understand the mechanisms and develop specific interventions for this group.

References

1. Mollan SP, Davies B, Silver NC, Shaw S, Mallucci CL, Wakerley BR, Krishnan A, Chavda SV, Ramalingam S, Edwards JJJoN, Neurosurgery, Psychiatry. Idiopathic intracranial hypertension: consensus guidelines on management2018: 1088 DOI: https://doi.org/10.1136/jnnp-2017-317440

2. Mollan SP, Aguiar M, Evison F, Frew E, Sinclair AJ. The expanding burden of idiopathic intracranial hypertension. Eye (London, England). 2019: 478 [PMID: 30356129 10.1038/s41433-018-0238-5: 10.1038/s41433-018-0238-5] DOI: https://doi.org/10.1038/s41433-018-0238-5

3. Daniels AB, Liu GT, Volpe NJ, Galetta SL, Moster ML, Newman NJ, Biousse V, Lee AG, Wall M, Kardon R, Acierno MD, Corbett JJ, Maguire MG, Balcer LJ. Profiles of obesity, weight gain, and quality of life in idiopathic intracranial hypertension (pseudotumor cerebri). American journal of ophthalmology. 2007: 635 [PMID: 17386271 10.1016/j.ajo.2006.12.040: 10.1016/j.ajo.2006.12.040] DOI: https://doi.org/10.1016/j.ajo.2006.12.040

4. Kilgore KP, Lee MS, Leavitt JA, Mokri B, Hodge DO, Frank RD, Chen JJJO. Re-evaluating the incidence of idiopathic intracranial hypertension in an era of increasing obesity2017: 697 DOI: https://doi.org/10.1016/j.ophtha.2017.01.006

5. Wall M, McDermott MP, Kieburtz KD, Corbett JJ, Feldon SE, Friedman DI, Katz DM, Keltner JL, Schron EB, Kupersmith MJJJ. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial2014: 1641 DOI: https://doi.org/10.1001/jama.2014.3312

6. Kalyvas AV, Hughes M, Koutsarnakis C, Moris D, Liakos F, Sakas DE, Stranjalis G, Fouyas IJAn. Efficacy, complications and cost of surgical interventions for idiopathic intracranial hypertension: a systematic review of the literature2017: 33 DOI: https://doi.org/10.1007/s00701-016-3010-2

7. Adderley NJ, Subramanian A, Nirantharakumar K, Yiangou A, Gokhale KM, Mollan SP, Sinclair AJ. Association Between Idiopathic Intracranial Hypertension and Risk of Cardiovascular Diseases in Women in the United Kingdom. JAMA neurology. 2019: 1088 [PMID: 31282950 10.1001/jamaneurol.2019.1812: 10.1001/jamaneurol.2019.1812] DOI: https://doi.org/10.1001/jamaneurol.2019.1812

8. O'Reilly MW, Westgate CS, Hornby C, Botfield H, Taylor AE, Markey K, Mitchell JL, Scotton WJ, Mollan SP, Yiangou A, Jenkinson C, Gilligan LC, Sherlock M, Gibney J, Tomlinson JW, Lavery GG, Hodson DJ, Arlt W, Sinclair AJ. A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics. JCI insight. 2019: [PMID: 30753168 10.1172/jci.insight.125348: 10.1172/jci.insight.125348] DOI: https://doi.org/10.1172/jci.insight.125348

9. Colman BD, Boonstra F, Nguyen MN, Raviskanthan S, Sumithran P, White O, Hutton EJ, Fielding J, van der Walt AJJoN, Neurosurgery, Psychiatry. Understanding the pathophysiology of idiopathic intracranial hypertension (IIH): a review of recent developments2024: 375 DOI: https://doi.org/10.1136/jnnp-2023-332222

10. Yiangou A, Mollan SP, Sinclair AJJNRN. Idiopathic intracranial hypertension: a step change in understanding the disease mechanisms2023: 769 DOI: https://doi.org/10.1038/s41582-023-00893-0

11. Libien J, Kupersmith M, Blaner W, McDermott M, Gao S, Liu Y, Corbett J, Wall M, sciences NIIHSGJJotn. Role of vitamin A metabolism in IIH: Results from the idiopathic intracranial hypertension treatment trial2017: 78 DOI: https://doi.org/10.1016/j.jns.2016.11.014

12. Alimajstorovic Z, Mollan SP, Grech O, Mitchell JL, Yiangou A, Thaller M, Lyons H, Sassani M, Seneviratne S, Hancox T, Jankevics A, Najdekr L, Dunn W, Sinclair AJ. Dysregulation of Amino Acid, Lipid, and Acylpyruvate Metabolism in Idiopathic Intracranial Hypertension: A Non-targeted Case Control and Longitudinal Metabolomic Study. Journal of proteome research. 2023: 1127 [PMID: 36534069 10.1021/acs.jproteome.2c00449: 10.1021/acs.jproteome.2c00449] DOI: https://doi.org/10.1021/acs.jproteome.2c00449

13. Strazzullo P, D'Elia L, Cairella G, Garbagnati F, Cappuccio FP, Scalfi L. Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Stroke. 2010: e418 [PMID: 20299666 10.1161/strokeaha.109.576967: 10.1161/strokeaha.109.576967] DOI: https://doi.org/10.1161/STROKEAHA.109.576967

14. Greenland S, Morgenstern HJAroph. Confounding in health research2001: 189 DOI: https://doi.org/10.1146/annurev.publhealth.22.1.189

15. Hernán MA, Robins JMJAjoe. Using big data to emulate a target trial when a randomized trial is not available2016: 758 DOI: https://doi.org/10.1093/aje/kwv254

16. Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G, D'Este C. Metabolic mediators of the eff ects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants2014:

17. Preston SH, Mehta NK, Stokes AJE. Modeling obesity histories in cohort analyses of health and mortality2013: 158 DOI: https://doi.org/10.1097/EDE.0b013e3182770217

18. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions: john wiley & sons; 2013.

19. Greenland SJE. Quantifying biases in causal models: classical confounding vs collider-stratification bias2003: 300 DOI: https://doi.org/10.1097/01.EDE.0000042804.12056.6C

20. Schneeweiss SJP, safety d. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics2006: 291 DOI: https://doi.org/10.1002/pds.1200

21. Hernan M, Robins J. Causal inference: What if. boca raton: Chapman & hill/crc2020:

22. Lin DY, Psaty BM, Kronmal RAJB. Assessing the sensitivity of regression results to unmeasured confounders in observational studies1998: 948 DOI: https://doi.org/10.2307/2533848

23. Schmiegelow MD, Andersson C, Køber L, Andersen SS, Olesen JB, Jensen TB, Azimi A, Nielsen MB, Gislason G, Torp-Pedersen C. Prepregnancy obesity and associations with stroke and myocardial infarction in women in the years after childbirth: a nationwide cohort study. Circulation. 2014: 330 [PMID: 24146252 10.1161/circulationaha.113.003142: 10.1161/circulationaha.113.003142] DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.003142

24. Li TY, Rana JS, Manson JE, Willett WC, Stampfer MJ, Colditz GA, Rexrode KM, Hu FB. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation. 2006: 499 [PMID: 16449729 10.1161/circulationaha.105.574087: 10.1161/circulationaha.105.574087] DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.574087

25. Song X, Tabák AG, Zethelius B, Yudkin JS, Söderberg S, Laatikainen T, Stehouwer CD, Dankner R, Jousilahti P, Onat A, Nilsson PM, Satman I, Vaccaro O, Tuomilehto J, Qiao Q. Obesity attenuates gender differences in cardiovascular mortality. Cardiovascular diabetology. 2014: 144 [PMID: 25928355 10.1186/s12933-014-0144-5: 10.1186/s12933-014-0144-5]

26. Dikaiou P, Björck L, Adiels M, Lundberg CE, Mandalenakis Z, Manhem K, Rosengren A. Obesity, overweight and risk for cardiovascular disease and mortality in young women. European journal of preventive cardiology. 2021: 1351 [PMID: 34647583 10.1177/2047487320908983: 10.1177/2047487320908983] DOI: https://doi.org/10.1177/2047487320908983

27. Medina-Inojosa JR, Batsis JA, Supervia M, Somers VK, Thomas RJ, Jenkins S, Grimes C, Lopez-Jimenez F. Relation of Waist-Hip Ratio to Long-Term Cardiovascular Events in Patients With Coronary Artery Disease. The American journal of cardiology. 2018: 903 [PMID: 29482851 10.1016/j.amjcard.2017.12.038: 10.1016/j.amjcard.2017.12.038] DOI: https://doi.org/10.1016/j.amjcard.2017.12.038

28. Kip KE, Marroquin OC, Kelley DE, Johnson BD, Kelsey SF, Shaw LJ, Rogers WJ, Reis SE. Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: a report from the Women's Ischemia Syndrome Evaluation (WISE) study. Circulation. 2004: 706 [PMID: 14970104 10.1161/01.Cir.0000115514.44135.A8: 10.1161/01.Cir.0000115514.44135.A8] DOI: https://doi.org/10.1161/01.CIR.0000115514.44135.A8

29. Czernichow S, Kengne AP, Stamatakis E, Hamer M, Batty GD. Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk?: evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2011: 680 [PMID: 21521449 10.1111/j.1467-789X.2011.00879.x: 10.1111/j.1467-789X.2011.00879.x] DOI: https://doi.org/10.1111/j.1467-789X.2011.00879.x

30. Kurth T, Gaziano JM, Rexrode KM, Kase CS, Cook NR, Manson JE, Buring JE. Prospective study of body mass index and risk of stroke in apparently healthy women. Circulation. 2005: 1992 [PMID: 15837954 10.1161/01.Cir.0000161822.83163.B6: 10.1161/01.Cir.0000161822.83163.B6] DOI: https://doi.org/10.1161/01.CIR.0000161822.83163.B6

31. Sánchez-Iñigo L, Navarro-González D, Fernández-Montero A, Pastrana-Delgado J, Martínez JA. Risk of incident ischemic stroke according to the metabolic health and obesity states in the Vascular-Metabolic CUN cohort. International journal of stroke : official journal of the International Stroke Society. 2017: 187 [PMID: 28134052 10.1177/1747493016672083: 10.1177/1747493016672083] DOI: https://doi.org/10.1177/1747493016672083

32. Zahn K, Linseisen J, Heier M, Peters A, Thorand B, Nairz F, Meisinger C. Body fat distribution and risk of incident ischemic stroke in men and women aged 50 to 74 years from the general population. The KORA Augsburg cohort study. PloS one. 2018: e0191630 [PMID: 29401461 10.1371/journal.pone.0191630: 10.1371/journal.pone.0191630] DOI: https://doi.org/10.1371/journal.pone.0191630

33. Chen MQ, Shi WR, Wang HY, Sun YX. Sex Differences of Combined Effects Between Hypertension and General or Central Obesity on Ischemic Stroke in a Middle-Aged and Elderly Population. Clinical epidemiology. 2021: 197 [PMID: 33732027 10.2147/clep.S295989: 10.2147/clep.S295989] DOI: https://doi.org/10.2147/CLEP.S295989

34. Chaudhary D, Khan A, Gupta M, Hu Y, Li J, Abedi V, Zand R. Obesity and mortality after the first ischemic stroke: Is obesity paradox real? PloS one. 2021: e0246877 [PMID: 33566870 10.1371/journal.pone.0246877: 10.1371/journal.pone.0246877] DOI: https://doi.org/10.1371/journal.pone.0246877

35. Horn JW, Feng T, Mørkedal B, Strand LB, Horn J, Mukamal K, Janszky I. Obesity and Risk for First Ischemic Stroke Depends on Metabolic Syndrome: The HUNT Study. Stroke. 2021: 3555 [PMID: 34281375 10.1161/strokeaha.120.033016: 10.1161/strokeaha.120.033016] DOI: https://doi.org/10.1161/STROKEAHA.120.033016

36. Yatsuya H, Toyoshima H, Yamagishi K, Tamakoshi K, Taguri M, Harada A, Ohashi Y, Kita Y, Naito Y, Yamada M, Tanabe N, Iso H, Ueshima H. Body mass index and risk of stroke and myocardial infarction in a relatively lean population: meta-analysis of 16 Japanese cohorts using individual data. Circulation Cardiovascular quality and outcomes. 2010: 498 [PMID: 20699444 10.1161/circoutcomes.109.908517: 10.1161/circoutcomes.109.908517] DOI: https://doi.org/10.1161/CIRCOUTCOMES.109.908517

37. Cordola Hsu AR, Xie B, Peterson DV, LaMonte MJ, Garcia L, Eaton CB, Going SB, Phillips LS, Manson JE, Anton-Culver H, Wong ND. Metabolically Healthy/Unhealthy Overweight/Obesity Associations With Incident Heart Failure in Postmenopausal Women: The Women's Health Initiative. Circulation Heart failure. 2021: e007297 [PMID: 33775111 10.1161/circheartfailure.120.007297: 10.1161/circheartfailure.120.007297] DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.120.007297

38. Padwal R, McAlister FA, McMurray JJ, Cowie MR, Rich M, Pocock S, Swedberg K, Maggioni A, Gamble G, Ariti C, Earle N, Whalley G, Poppe KK, Doughty RN, Bayes-Genis A. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. International journal of obesity (2005). 2014: 1110 [PMID: 24173404 10.1038/ijo.2013.203: 10.1038/ijo.2013.203] DOI: https://doi.org/10.1038/ijo.2013.203

39. Halldin AK, Schaufelberger M, Lernfelt B, Björck L, Rosengren A, Lissner L, Björkelund C. Obesity in Middle Age Increases Risk of Later Heart Failure in Women-Results From the Prospective Population Study of Women and H70 Studies in Gothenburg, Sweden. Journal of cardiac failure. 2017: 363 [PMID: 27940334 10.1016/j.cardfail.2016.12.003: 10.1016/j.cardfail.2016.12.003] DOI: https://doi.org/10.1016/j.cardfail.2016.12.003

40. Mørkedal B, Vatten LJ, Romundstad PR, Laugsand LE, Janszky I. Risk of myocardial infarction and heart failure among metabolically healthy but obese individuals: HUNT (Nord-Trøndelag Health Study), Norway. Journal of the American College of Cardiology. 2014: 1071 [PMID: 24345592 10.1016/j.jacc.2013.11.035: 10.1016/j.jacc.2013.11.035] DOI: https://doi.org/10.1016/j.jacc.2013.11.035

41. Kawada T. Metabolically healthy obesity and cardiovascular events: A risk of obesity. Diabetes, obesity & metabolism. 2022: 763 [PMID: 34927325 10.1111/dom.14628: 10.1111/dom.14628] DOI: https://doi.org/10.1111/dom.14628

42. Chandramouli C, Tay WT, Bamadhaj NS, Tromp J, Teng TK, Yap JJL, MacDonald MR, Hung CL, Streng K, Naik A, Wander GS, Sawhney J, Ling LH, Richards AM, Anand I, Voors AA, Lam CSP. Association of obesity with heart failure outcomes in 11 Asian regions: A cohort study. PLoS medicine. 2019: e1002916 [PMID: 31550265 10.1371/journal.pmed.1002916: 10.1371/journal.pmed.1002916] DOI: https://doi.org/10.1371/journal.pmed.1002916

43. Kenchaiah S, Ding J, Carr JJ, Allison MA, Budoff MJ, Tracy RP, Burke GL, McClelland RL, Arai AE, Bluemke DA. Pericardial Fat and the Risk of Heart Failure. Journal of the American College of Cardiology. 2021: 2638 [PMID: 34045020 10.1016/j.jacc.2021.04.003: 10.1016/j.jacc.2021.04.003] DOI: https://doi.org/10.1016/j.jacc.2021.04.003

44. Lee SK, Kim SH, Cho GY, Baik I, Lim HE, Park CG, Lee JB, Kim YH, Lim SY, Kim H, Shin C. Obesity phenotype and incident hypertension: a prospective community-based cohort study. Journal of hypertension. 2013: 145 [PMID: 23079679 10.1097/HJH.0b013e32835a3637: 10.1097/HJH.0b013e32835a3637] DOI: https://doi.org/10.1097/HJH.0b013e32835a3637

45. Kabootari M, Akbarpour S, Azizi F, Hadaegh F. Sex specific impact of different obesity phenotypes on the risk of incident hypertension: Tehran lipid and glucose study. Nutrition & metabolism. 2019: 16 [PMID: 30858870 10.1186/s12986-019-0340-0: 10.1186/s12986-019-0340-0] DOI: https://doi.org/10.1186/s12986-019-0340-0

46. Lewandowska M, Więckowska B, Sajdak S. Pre-Pregnancy Obesity, Excessive Gestational Weight Gain, and the Risk of Pregnancy-Induced Hypertension and Gestational Diabetes Mellitus. Journal of clinical medicine. 2020: [PMID: 32599847 10.3390/jcm9061980: 10.3390/jcm9061980] DOI: https://doi.org/10.3390/jcm9061980

47. Nurdiantami Y, Watanabe K, Tanaka E, Pradono J, Anme T. Association of general and central obesity with hypertension. Clinical nutrition (Edinburgh, Scotland). 2018: 1259 [PMID: 28583324 10.1016/j.clnu.2017.05.012: 10.1016/j.clnu.2017.05.012] DOI: https://doi.org/10.1016/j.clnu.2017.05.012

48. Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, Speizer FE, Stampfer MJ. Birth weight and adult hypertension and obesity in women. Circulation. 1996: 1310 [PMID: 8822985 10.1161/01.cir.94.6.1310: 10.1161/01.cir.94.6.1310] DOI: https://doi.org/10.1161/01.CIR.94.6.1310

49. Gus M, Fuchs SC, Moreira LB, Moraes RS, Wiehe M, Silva AF, Albers F, Fuchs FD. Association between different measurements of obesity and the incidence of hypertension. American journal of hypertension. 2004: 50 [PMID: 14700512 10.1016/j.amjhyper.2003.08.010: 10.1016/j.amjhyper.2003.08.010]

50. Behboudi-Gandevani S, Ramezani Tehrani F, Hosseinpanah F, Khalili D, Cheraghi L, Kazemijaliseh H, Azizi F. Cardiometabolic risks in polycystic ovary syndrome: long-term population-based follow-up study. Fertility and sterility. 2018: 1377 [PMID: 30503137 10.1016/j.fertnstert.2018.08.046: 10.1016/j.fertnstert.2018.08.046] DOI: https://doi.org/10.1016/j.fertnstert.2018.08.046

51. Freedman DS, Williamson DF, Croft JB, Ballew C, Byers T. Relation of body fat distribution to ischemic heart disease. The National Health and Nutrition Examination Survey I (NHANES I) Epidemiologic Follow-up Study. American journal of epidemiology. 1995: 53 [PMID: 7785674 10.1093/oxfordjournals.aje.a117545: 10.1093/oxfordjournals.aje.a117545] DOI: https://doi.org/10.1093/oxfordjournals.aje.a117545

52. Quesada O, Lauzon M, Buttle R, Wei J, Suppogu N, Kelsey SF, Reis SE, Shaw LJ, Sopko G, Handberg E, Pepine CJ, Bairey Merz CN. Body weight and physical fitness in women with ischaemic heart disease: does physical fitness contribute to our understanding of the obesity paradox in women? European journal of preventive cardiology. 2022: 1608 [PMID: 35244151 10.1093/eurjpc/zwac046: 10.1093/eurjpc/zwac046] DOI: https://doi.org/10.1093/eurjpc/zwac046

53. Okamura T, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukui M. Ectopic fat obesity presents the greatest risk for incident type 2 diabetes: a population-based longitudinal study. International journal of obesity (2005). 2019: 139 [PMID: 29717276 10.1038/s41366-018-0076-3: 10.1038/s41366-018-0076-3] DOI: https://doi.org/10.1038/s41366-018-0076-3

54. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Willett WC, Giovannucci EL. Comparison of the association of predicted fat mass, body mass index, and other obesity indicators with type 2 diabetes risk: two large prospective studies in US men and women. European journal of epidemiology. 2018: 1113 [PMID: 30117031 10.1007/s10654-018-0433-5: 10.1007/s10654-018-0433-5] DOI: https://doi.org/10.1007/s10654-018-0433-5

55. Park SK, Ryoo JH, Oh CM, Choi JM, Jung JY. Longitudinally evaluated the relationship between body fat percentage and the risk for type 2 diabetes mellitus: Korean Genome and Epidemiology Study (KoGES). European journal of endocrinology. 2018: 513 [PMID: 29523634 10.1530/eje-17-0868: 10.1530/eje-17-0868] DOI: https://doi.org/10.1530/EJE-17-0868

56. Carey VJ, Walters EE, Colditz GA, Solomon CG, Willett WC, Rosner BA, Speizer FE, Manson JE. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses' Health Study. American journal of epidemiology. 1997: 614 [PMID: 9098178 10.1093/oxfordjournals.aje.a009158: 10.1093/oxfordjournals.aje.a009158] DOI: https://doi.org/10.1093/oxfordjournals.aje.a009158

57. Anagnostis P, Paparodis RD, Bosdou JK, Bothou C, Macut D, Goulis DG, Livadas S. Risk of type 2 diabetes mellitus in polycystic ovary syndrome is associated with obesity: a meta-analysis of observational studies. Endocrine. 2021: 245 [PMID: 34176074 10.1007/s12020-021-02801-2: 10.1007/s12020-021-02801-2] DOI: https://doi.org/10.1007/s12020-021-02801-2

58. Sluik D, Boeing H, Montonen J, Pischon T, Kaaks R, Teucher B, Tjønneland A, Halkjaer J, Berentzen TL, Overvad K, Arriola L, Ardanaz E, Bendinelli B, Grioni S, Tumino R, Sacerdote C, Mattiello A, Spijkerman AM, van der AD, Beulens JW, van der Schouw YT, Nilsson PM, Hedblad B, Rolandsson O, Franks PW, Nöthlings U. Associations between general and abdominal adiposity and mortality in individuals with diabetes mellitus. American journal of epidemiology. 2011: 22 [PMID: 21616928 10.1093/aje/kwr048: 10.1093/aje/kwr048] DOI: https://doi.org/10.1093/aje/kwr048

59. Yang J, Qian F, Chavarro JE, Ley SH, Tobias DK, Yeung E, Hinkle SN, Bao W, Li M, Liu A, Mills JL, Sun Q, Willett WC, Hu FB, Zhang C. Modifiable risk factors and long term risk of type 2 diabetes among individuals with a history of gestational diabetes mellitus: prospective cohort study. BMJ (Clinical research ed). 2022: e070312 [PMID: 36130782 10.1136/bmj-2022-070312: 10.1136/bmj-2022-070312] DOI: https://doi.org/10.1136/bmj-2022-070312

60. Hong S, Park JH, Han K, Lee CB, Kim DS, Yu SH. Association Between Obesity and Cardiovascular Disease in Elderly Patients With Diabetes: A Retrospective Cohort Study. The Journal of clinical endocrinology and metabolism. 2022: e515 [PMID: 34597374 10.1210/clinem/dgab714: 10.1210/clinem/dgab714] DOI: https://doi.org/10.1210/clinem/dgab714

61. Duckles SP, Miller VM. Hormonal modulation of endothelial NO production. Pflugers Archiv : European journal of physiology. 2010: 841 [PMID: 20213497 10.1007/s00424-010-0797-1: 10.1007/s00424-010-0797-1] DOI: https://doi.org/10.1007/s00424-010-0797-1

62. Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, Doubal FN, Brown R, Ramirez J, MacIntosh BJ, Tannenbaum A, Ballerini L, Rungta RL, Boido D, Sweeney M, Montagne A, Charpak S, Joutel A, Smith KJ, Black SE. Perivascular spaces in the brain: anatomy, physiology and pathology. Nature reviews Neurology. 2020: 137 [PMID: 32094487 10.1038/s41582-020-0312-z: 10.1038/s41582-020-0312-z] DOI: https://doi.org/10.1038/s41582-020-0312-z

63. Hornby C, Mollan SP, Botfield H, OʼReilly MW, Sinclair AJ. Metabolic Concepts in Idiopathic Intracranial Hypertension and Their Potential for Therapeutic Intervention. Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society. 2018: 522 [PMID: 29985799 10.1097/wno.0000000000000684: 10.1097/wno.0000000000000684] DOI: https://doi.org/10.1097/WNO.0000000000000684

64. Markey K, Mitchell J, Botfield H, Ottridge RS, Matthews T, Krishnan A, Woolley R, Westgate C, Yiangou A, Alimajstorovic Z, Shah P, Rick C, Ives N, Taylor AE, Gilligan LC, Jenkinson C, Arlt W, Scotton W, Fairclough RJ, Singhal R, Stewart PM, Tomlinson JW, Lavery GG, Mollan SP, Sinclair AJ. 11β-Hydroxysteroid dehydrogenase type 1 inhibition in idiopathic intracranial hypertension: a double-blind randomized controlled trial. Brain communications. 2020: fcz050 [PMID: 32954315 10.1093/braincomms/fcz050: 10.1093/braincomms/fcz050] DOI: https://doi.org/10.1101/648410

65. Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. Cell metabolism. 2017: 1027 [PMID: 28467922 10.1016/j.cmet.2017.04.015: 10.1016/j.cmet.2017.04.015] DOI: https://doi.org/10.1016/j.cmet.2017.04.015

66. Mariniello B, Ronconi V, Rilli S, Bernante P, Boscaro M, Mantero F, Giacchetti G. Adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 expression in obesity and Cushing's syndrome. European journal of endocrinology. 2006: 435 [PMID: 16914598 10.1530/eje.1.02228: 10.1530/eje.1.02228] DOI: https://doi.org/10.1530/eje.1.02228

Downloads

Published

2024-11-27

How to Cite

1.
Azzam AY, Morsy MM, Ellabban MH, et al. Idiopathic Intracranial Hypertension and Cardiovascular Diseases Risk in the United Kingdom Women: An Obesity-Adjusted Risk Analysis Using Indirect Standardization. ASIDE Int Med. 2024;1(1). doi:10.71079/h1fr8h68

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.